3. (5 points) Suppose that f and g are functions such that

$$f(g(x)) = x \tag{*}$$

for every x, and that $f'(x) = \frac{1}{x}$. Prove that g'(x) = g(x) by differentiating (*).

By the chain rule:
$$1 = \frac{d}{dx} \times = \frac{d}{dx} f(g(x)) = f'(g(x)) g'(x)$$

$$= \frac{1}{g(x)} g'(x)$$

$$= \frac{1}{g(x)} g'(x)$$
Multiply by $g(x)$ to get $g = g'$.

4. (5 points) Draw the graph of a function f which is continuous on $(-\infty, \infty)$, differentiable on $(-\infty, 0) \cup (0, \infty)$ (and not differentiable at 0), and f'(x) > 0 wherever f is differentiable.

